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ON THE EXISTENCE OF CONVEX HYPERSURFACES
OF CONSTANT GAUSS CURVATURE
IN HYPERBOLIC SPACE

HAROLD ROSENBERG & JOEL SPRUCK

Introduction

In this paper we shall prove that a codimension-one embedded sub-
manifold I'" of BOO(H"“) is the asymptotic boundary of a complete em-

bedded K-hypersurface M of a hyperbolic (n + 1)-space H"*! for any
K € (-1,0). By a K-hypersurface M, we mean the Gauss-Kronecker
curvature of M is the constant K (recall that K = K_, —1, where K,
is the extrinsic curvature of M, i.e., the determinant of the second fun-
damental form). Our approach is to construct the desired M as the limit
of K-graphs over a fixed compact domain in a horosphere for appropri-
ate boundary data. Thus an important part of our study is an existence
theory for K-hypersurfaces which are graphs over a bounded domain in
a horosphere. This is accomplished by solving a Monge-Ampere equation
for the Gauss curvature using the recent work of [6].

In general, a codimension-two closed submanifold I" of H' '~ does not
bound a K-hypersurface with K > —1. There are topological obstructions
for T" to bound a hypersurface with K > —1 (cf. [13]). For example, let
T’ be a smooth Jordan curve in H , and assume I" bounds a surface with
K > —1. Then the curvature of I" never vanishes, so let n(x), x € I,
be the unit principal normal to I'. For x €', let I',(x) be the endpoint
of the geodesic starting at x, of length ¢, and with n(x) as tangent at
x . For € small, T, is embedded and disjoint from I'. Then the linking
number (mod2) of I' and I', is zero [13]; so it is easy to construct I'
which bound no surface with K > —1.

We will see that for I' an embedded codimension-one submanifold of
a horosphere C ™! ,and K € (-1, 0), there exists a K-hypersurface
M with boundary oM =T".

n+1

Received July 16, 1993. The second author was supported in part by NSF grant DMS-88-
02858 and DOE grant DE-FG02-86ER250125.



380 HAROLD ROSENBERG & JOEL SPRUCK

Let H*™! be represented by the upper half-space model:
H"' = {(x,x,,)eR" |xeR", x,,, >0},

with the metric ds® = (l/x,zm)(a'xl2 +- 4 dxf). Let P_ denote the
extended plane x, ., = 0, and denote by P(c), ¢ > 0 the horosphere
xn+1 =c.

Let P = P(1), and let Q C P be a compact domain with 8Q =T a
C*° submanifold. Here are our main results.

Theorem 1. Let ¢ € C(I"), and suppose the graph of ¢ extends to
a smooth graph M = {(x, x,,,) 1 x,., = f(x), f € C*(Q), f=¢ on
oQ} with

Ky

= inf K(x) > -1.

xeM
Then for any K, —1 < K < K,,, there exists an extension f € C*(Q) of
¢ to Q whose graph is a K-hypersurface.

Corollary 1. For any K € (-1, 0), there exists a smooth K-hypersur-
face M with 8M =T; M can be chosen a graph over Q.

To prove this corollary, one applies Theorem 1 with ¢ =0 on Q; the
horosphere P has curvature zero (extrinsic curvature one).

We remark that when 8Q is strictly convex, then the graph of ¢ over
#Q has an extension to a smooth graph over Q with curvature greater
than —1. Thus we have _

Corollary 2. Let Q strictly convex. Then the graph of ¢ extends to a
smooth graph over Q with K constant, K sufficiently near —1.

The technique of the proof of Theorem 1 is the continuity method
applied to the equation for the curvature of a graph over Q. This is a
fully nonlinear equation of Monge-Ampere type, and the difficult part of
the proof is to obtain a priori C>™™ bounds for solutions of the equation.
An interesting point here is the absence of any convexity hypothesis on
8Q. The recent work in {8] and [6] is used here to deal with domains of
arbitrary geometry.

Using Theorem 1 as a tool, we construct, for any K € (-1, 0), a K-
graph with given smooth asymptotic boundary. More precisely, we have

Theorem 2. Let ' = 8Q C BOO(H"H) be smooth. Then for any
Ke(-1,0), T =8_(M) for M an embedded K-hypersurface of H"!,
Moreover, M can be represented as a graph x, , = f(x) over Q with
u(x) =exp2fix)e Cl’l(ﬁ) and u=0 on 8Q.

It is also of interest to consider the case of nonsmooth asymptotic
boundaries. :

Theorem 3. Let T =06Q C 60°(H"+1). Assume the following :

a. For n=2, T consists of a finite number of Jordan curves.
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b. For n > 2, every point of 8Q is a regular point for Laplaces equa-
tion.

Then the conclusions of Theorem 2 hold with u(x) € C*(Q) U C°’(Q).

Finally, it is a remarkable property of H® that for T a Jordan curve
in P(c) or P_, all of the K-surfaces which we can construct are in fact
unique. To make this precise, we say that a Jordan curve I' in P_ is the
asymptotic homological boundary of a surface M in H? if for ¢ > 0 suf-
ficiently small, M N P(c) contains a connected component I'(c) such that
I'(c) convergesto I" as ¢ — 0 and I'(c) is homologous to zeroon M ,i.e.,
there exists a compact submanifold M(c) of M and I'(c) =0M(c). We
write I' =8 M to mean that I is the asymptotic homological boundary
of M.

Theorem 4. Let Q be a bounded simply connected domain in P(c),
respectively P_ with boundary a Jordan curve T". Then there are exactly

two embedded K-surfaces M in H® with 9M =T, respectively 3 _M =T

(in the ball model of H 3). Each surface is a graph over one of the two
components of P_ —T. Moreover, if M is any immersed K-surface with
OM =T, respectively 3 _M =T, then M is embedded and thus is one of
the two graphical disks.

An outline of the paper is as follows. In §1 and §2, we derive, respec-
tively, the equation for the curvature of a graph over a domain in a horo-
sphere, and C*** bounds for smooth admissible solutions to this equation.
These estimates provide strong compactness estimates for K-graphs and
the basis for our subsequent arguments. §3 contains a sketch of the proof
of Theorem 1 by using these estimates. In §4 we construct appropriate
approximating graphs x,_, = f(x; c¢) with boundaries in P(c), and ob-
tain sharp C L1 estimates independent of ¢ for u(x;c) =exp2f(x;c)
as ¢ tends to zero. We then pass to the limit to get Theorem 2. In §5
we prove Theorem 3 by an approximation process. Section 6 contains the
proof of Theorem 4 using foliation and comparison arguments. These are
based on the formula for the linearized operator associated to a K-surface
in B , and this formula and its consequent implications for stability of
K-surfaces is explained in the Appendix.

1. The equation for X
The hyperbolic distance from a point (g5, X, +1) to the horosphere
P={x,,,=1}is y =Inx, ,. Now suppose M is a graph & = f(x),
over a domain QC P, x =(x,, -, x,, 1). We parametrize M by the
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coordinates X, , --- , x, andlet f;, f; ; denote the usual partial derivatives

of f.
Proposition 1.1. 7The equation for K is:

(1.1) det(f;'j + 2f;f; + e—2f6ij) =(K+ ])e_2"f(1 + eszVf|2)(n+2)/2,

Formula (1.1) is well known (see for example [1}).

Proof of Proposition 1.1. The proof is a long and tedious calculation.
We list the principal steps and let the courageous reader verify the state-
ments.

Let e;,--- , e, , be the standard basis of R""! andlet & = X4t 8y
= X, 1€l - One has the coordinate vector fields on M: X =€+ fic’)y s

and the induced metric on M is given by
-2
g =9,¢ f+f,.fj.

The Christoffel symbols of the hyperbolic metric are (let m = n + 1):

r ={0 ifi<m,

., m -1/x, ifi=m,
i 0 ifitm, j#m, k#m,
j’k:{ — 0, /%, ifi=m,

r ={0 ifj<m, i #],

J.m -1/x, ifi=j<m.

Let V be the Riemannian connection of H*'' . Then
—2f
Vx X;=—fe;— fiei+ (fij+e 76,0,

The upward pointing unit normal v to M is:

1 Zyn
V=?(c’)y—e ;fiei) ,
2 2\~ 2

e (1+eyzf;).
i=1

One then calculates the coefficients of the second fundamental form:
1
by =(VxX;,v)= ?(f,.j +2f.f; +e6-216;;).
Then (1.1) results from

(K +1)detg,; = detb,;.
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2. C*** A Priori Bounds
We shall consider an equation slightly more general than (1.1). Let Q
be a smooth domain in R” and consider the equation:

1) det(f,, +2f,f,+e 8,) =y(x, f,Vf) inQ,
f=¢ on 9Q,
where ¢, y are smooth, and y, = inf, ¥ > 0 for f € &/ (see (2.5)). The
choice ¥ = (K+1)e M (1+e¥|v/1H™D/? with K+1=K(x, f)+1>
€, > 0, corresponds to prescribed Gauss curvature K = K(x, f).
We assume y satisfies
(2.2) gx, f,p)=w(x, f,p)"" is convex in p.

In order for (2.1) to be elliptic, f must be “hyperbolic strictly locally
convex”™; that is,

(2.3) {f;+2f,+e6,}>0 inQ.
We assume for the boundary data ¢, the existence of a strict subsolution

S of (2.1) (satisfying (2.3)):
det(f,;+2f,f;,+e L8, ) 2y(x, £, V) +6, nQ,

f=¢ on 9Q
for some & > 0, and define the class of admissible functions
& ={f € C*(Q) satisfying (2.3), f=¢ on 3Q,

det(f;; +2£,f, +e ) > yy and f > £}

In deriving our estimates, it is much more convenient to work with
u — e* . We observe that S satisfies (2.3) if and only if u satisfies

(2.6) {u,; +25,} > 0.

(2.4)

(2.5)

Set ¢ = e2¢, u= e*L > 0 and define
& = {u € C*(Q) satisfying (2.6), u = ¢ on 8Q,

7 n N . =
(2.7) det(u;; +26,;) > (Zigfg) Yy =¥, and u>u>0in Q}.

Note that f € & satisfies (2.1) if and only if u € %/ satisfies
(2.8)  det(u; +26;;) =2"u"y(x, {Inu, §(Vu/u)) = §(x, u, Vu).
Lemma2.1. Let uc./ . Then u<u<h- |x|2 where his harmonic

in Q, h=p+|x|* on 8Q. Also, |Vu| < C in Q for a controlled constant
C.
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Proof. Observe that u € 7 implies that # = u + |x|2 is convex, since
i, =u;+ 2‘51';'- In particular # is subharmonic and thus # < #. This
shows that

g-}-lxlzgﬂgh in Q.

Consequently, |Vii| < C on Q. But for a convex function |Vi| achieves
its maximum on 9L and so |Vi| < C in Q. The lemma follows. q.e.d.
We turn next to second derivative estimates for 4« on 8Q . Consider a
point 0 € 9Q and choose coordinates so that the positive x,-axis is the
interior normal to 8 at 0. Near 0, we can represent 9} as a graph

1
(2.9) x, = p(x') = 3 2 Bupxax +@(x')),
o, f<n
where x' = (x;,--+,x, ). Ifue & ,then (u—u)(x', p(x')) = 0; thus
(2.10) (—w),y(0) = ~(u—w),(0)B,y; @, B<n.

In particular for u € .537,
(2.11) luaﬁ(O)lSC, a, B <n.

We need to establish, in addition, the strict tangential (hyperbolic) con-
vexity of u, i.e.,

(2.12) D gy +28,,0E,8, > ¢, > 0.
a’ﬂ

By rotating coordinates, it suffices to show that
(2.13) u,+22>¢

for a controlled constant ¢, > 0. This is easily proven directly as in [6],
and in fact we can transform to the case studied there. To see this, note
that u € &/ implies that & = u + |x|2 is locally (Euclidean) convex and
satisfies (recall Lemma 2.1)

detﬂ,.j >y, >0 inQ,
u=¢+ |x|2 on 9Q.
Moreover it = u + |x|2 is strictly locally convex, &t < # in Q, % = il
on 4Q. This is exactly the classical Monge-Ampere case as studied in [6,

Proposition 2.1]. This gives
Proposition 2.2. There exists c, = c,(Q2, ¢, u) so that (2.12) holds for

any uec s .
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Remark. Thus far we have not made use of condition (2.2), nor the
strictness of the subsolution, i.e. d, > 0 in (2.4). These conditions will be
utilized below to obtain an estimate for |u ,(0)|.

Set F(D*u) = (det(u;; + 26,.].))1/", and let L = F"fa,.aj denote the
linearized operator, i.e., F/ = F /0u; i If ue is a solution of (2.8),

then F" =&(x,u, vu)b” /n , where ("} is the inverse of the positive
matrix {b;;} given in (2.6), and from (2.8) we have

T Loy, 1vuy _ Doy, Lvu
g=vy 2ugu (x,zlnu,zu)—2ug(x,2lu > )

Since gp, /2u, we see that g is convex in Vu. Set

gP,P
(2.14) F=L-§08-C,

with C; = max|9g/0u| > 0, the maximum taken over the compact set
(see Lemma (2.1)) x € Q, |u|+|Vu| < C so that C, is a controlled
constant. N

Lemma2.3. Let u€ ./ beasolutionof (2.8). Then thereis a controlled
positive constant €1 so that

(2.15) Z(u—u) (1 + ZF”) inQ
Proof. Consider w = u — €|x| /2; for e >0 small enough, {w,; +
26;;} >0 and
det(w;; +2d,;) = det(y;; + (2 —€)d;))
> det(y,; +26;;) — Ce in Q
> ¥(x, u, Vi) + (2"4"5, - Ce)
for a uniform constant C. Hence for ¢ small enough,
(2.16) (det(w,; +28i/)"" > g(x, u, Vi) + €

for a controlled constant €, > 0.
Since F (Dzu) is concave in D’u (see [31),

F(D*w) < F(D*u) + L(w — u),
and hence

(2.17) L(u—u) < —¢, —eZFii+g(x, u, Vu) — g(x, u, Vu).
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Using the convexity of g(-, -, p) in p, we obtain
(2.18) &(x,u, Vu) - g(x,u, Vu) < G(u—w) + &, (x, u, Vu)(u — u);.

Combining (2.17) and (2.18) gives (2.15) (recall (2.14)).

Lemma 2.4. Let u € s/ be a solution of (2.8). Then |u,(0) < C,
a < n, for a controlled constant C .

Proof. In QN B_(0), consider the barrier

(2.19) w = A(u — u) + Blx|° > 0.
With T = 8+ p,0, ,the tangential boundary operator corresponding to

a’'n?

0/0x,, we have
Tu—u)=0 ondQnB(0),
IT(u—u)| <C onQN3IB(0),

and
LT (u—u)| < C (1 + ZF"") in QN B, (0).

(To see this last inequality we use the formulas Zu, = &(1),

LTu—-u)=Lu, +p, Lu, +u,(Lp, + 8,iPoi) + 2Fijpaiunj
and
ij ijz in 1, ijy in 1 in
S FYu, . =% (F'b, —2F )=;ga b~ 2F" = 26, —2F".)
J J J

Choosing 4> B > 1 in (2.19), by Lemma 2.3 we find that
LwxT(u-u) <0 in QnB_(0)

and
w > |T(u—u)| ond(Qn B,(0)).

Thus by the maximum principle,
w>xT(u—u) inQnNB,(0)
and thus, in consequence of w(0) = T(u — u)(0) =0,
(1= ), (O] < w, (0) = At — ), (0)

or
lu,,(0)| < Ci4+C,. ged.

Corollary 2.5. Let u € & be a solution of (2.8). Then |u,,(0)| <C,
for a controlled constant C .
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Proof. Expanding the left-hand side of (2.8) in cofactors and using
Lemmas 2.4 and 2.1 (and 2.11) give A" (u,, +2) < C at 0. By Proposi-

tion 2.2, A™ > c(','_1 and so —2 < U, < C/c(')'_1 . qed.
We now have completed the proof of the a priori estimate

(2.20) Y lu;;l<C ondQ

i,j
and we now complete the proof of the global second derivative bounds
(2.21) Y luyl<C Q.

i’j

Instead of carrying out the well-known argument we directly appeal to
the classical result by again utilizing # = u + |x|2 , which satisfies

N . N 2 N 2 N o
detit,, = @(x, it~ |x|", V(i - |x|")) =n(x, &, V, &) in Q.

We note that # is a smooth function of its arguments and that ) |12ij| <
C +2n on 9Q by (2.20). Appealing to [3], we obtain a global bound for
> lit;| and thus (2.21) is proven.

From (2.21) and the elliptic regularity theory for concave fully nonlinear
elliptic equations (see[2]), we finally obtain

Theorem 2.6. Let u € & be a solution of (2.8). Then |u| @) <
C for controlled constants o € (0, 1) and C > 0, depending only on
Q. v, u.

3. Existence
In this section we sketch a proof of the existence of a smooth admissible
solution f € & to (2.1). As explained in §2, we study the equivalent

problem of finding a smooth solution u € & 10 (2.8).
Recall that from Lemma 2.1,

(3.1) lul+|Vu| < C forues/.
Set

(3.2) M:sup{%%(x,u,\?u):xeﬁ, |u|+|Vu|§C}

with C asin (3.1) and ¥ as in (2.8). Consider the iterative increasing
sequence {uk }x>; defined by the problems

det(ufj +26;;) =y(x, VA Vuk) + M(uk - uk—l) inQ,

(3.3), .
u =¢ ondQ,
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where #* € & and «° = u . Observe that if e, , then by (3.1) and
(3.2),
wix, u' ™, Vi) - M < gix, w, Vi) - Mu,

and so u is a strict subsolution to (3.3,). Note also that s a

subsolution to (3.3), . In fact,
(3.4) det(u:.j+25ij)2y?(x,u',Vu'), r=1,---, k-1

The existence of a unique solution u* € & to (3.3), follows in a
straightforward way from the continuity method and the estimates (The-
orem 2.6) of §2. We briefly sketch the argument. Set

k—1 k—

7 x, w, Vw) = w(x, ", Vw) + Mw —d*7"),

and consider the family of problems for w', ¢ € [0, 1]:

(35), det(w;;+20,)=74'(x,w', Vo), w'ed, w' =u"",
where (recall W’ = u)

(l—t)nk_l(x,w,Vw)thnk(x,w,Vw), k>2

(1-1)ydet(y; +26,) + 11, k=1

nt(x,w, Vw)z{

By our choice of M,
n'(x,w, Vw) <p(x,u, Vo) + Mw -u),  k>2.

Thus u is a strict subsolution of (3.5), vt € [0,1] for k > 2 and
vt € (0, 1] for k = 1. Starting from w®=u at =0 we solve (3.5),
using the Implicit Function Theorem for 0 < ¢ < 2¢, (with #, small enough
to insure {wt+26,. j} > 0 in Q). Then by the maximum principle, w'>u
so that w' € & . Apply Theorem 2.6 for ¢ > ¢, to obtain ||w'HCz+u <C
independent of ¢. Therefore we can repeat the process and reach ¢ =1
in a finite number of steps. Thus we arrive at a sequence of solutions to
(3.3),: w<u' <<k,

It follows that {uk}k>1 converges to some u € CO’I(ﬁ) with u > u.
We will in fact show that u is a smooth solution to (2.8) by establishing
the a priori estimates

k .
(3.6) |2 || ce@ < C, independent of k.
It suffices, as remarked earlier to derive an a priori C 2 estimate

(3.7) ||uk||C2(§—2) < C, independent of k
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from which (3.6) follows. In view of (3.1), we need only estimate |D2uk|
on Q. We first estimate lDzuk | on 9Q. Since each uF satisfies (3.4),
Proposition 2.2 applies. Therefore from the discussion of §2, it suffices
to estimate |u§n| < C, independent of k& at any point 0 € Q. But

each u = u* satisfies (3.3), > and u is a strict subsolution so that Lemma
2.4 and the discussion preceding it apply (one easily checks that the nth
root of the right-hand side of (3.3) is convex in Vu). This yields bounds
independent of k for luﬁn(0)| since we already have obtained uniform
C' estimates.

Thus the essential point is to obtain uniform bounds for |D2 uk | in Q,
knowing that such an estimate holds on 8Q. Set

Vit P +a) 2, k-
Mk — xeﬁr’n?gsn_l e.“(' ] )/ (ucc + 2)

with
k

k—1
u=1+sup sup fpipjéiéj(x, u ,Vu),

k |5=1, xeQ

where f = log{y(x, Vet \ Vuk) + M(uk - uk_l)}. By (3.1) u is well-
defined. As in the proof of (2.21) (see [3] or §4.3 of this paper) we easily
derive R

M <CM +CM _,+C
with C;, i=1,.--,3 independent of k. Hence

M} <M]_/2+(Cl+2C;+2C), k=1,2,.--,

and so
M} < M3 J2" + (2C +4C +4Cy) < C.
This completes the proof of the smooth convergence.
Remark. 1. For the case of Gauss curvature, we can take M = 0 in
(3.3), , and the proof is somewhat simpler.
2. Tt is easy to see that we have found among the admissible solutions
u € . , the “smallest”, that is the one closest to u.

4. Proof of Theorem 2

Let ' C 6®(H"+1) be a smooth embedded codimension-one submani-

fold. We think of T' € {x,,, = 0} cR™' as T'=9Q, with Q a smooth

domain in {x,,, = 0}. Denote by P(c) the hyperplanes x,,, = ¢, so

that P(c) is a horosphere of H™™' for ¢ > 0. Let I'(c), Q(c) be the
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vertical translations of I" and Q to P(c). By Corollary 1, we know that
I'(c) bounds a locally strictly convex graph y = f(x; ¢) of constant Gauss
curvature K € (-1, 0), where y = Inx, , is the signed distance to the
horosphere P(1). Thus f satisfies

det(f;; +2f,f, +e s,
(4.1) =K+ De ™+ vrPH™P? inQ1),
S =Inc on8Q(1).
By setting as before u(x;c) = e* , then u = u(x; ¢) is a solution of
det(u;; +20,) = 2"(K + 1)(1 +[Vul*/4w)™?” "in Q(1),
u=c" on I'(1) = 8(Q(1)).

Our goal is to pass to the limit in (4.2) by obtaining sufficiently strong a
priori estimates for the family {u(x; ¢)}, ., which are independent of
¢ . In fact we will show that ||ul| 2 @y S C fora constant C independent

of ¢. Moreover for any compact subdomain Q' of (1), it then follows
from Evans’ theorem [5] that

(4.2)

!
(4.3) |2, c)||C2+a(Q,) <C,

where o, C’' are again independent of ¢. These estimates are strong
enough to pass to the limit as ¢ — 0 and obtain a solution u = u(x, 0) €
C2+a(Q(1)) nct 1(ﬁ( 1)) . With a little more effort, one could find the pre-
cise asymptotic behavior for u as in Lee-Melrose [10], but these estimates
are not essential here.

4.1. Comparison surfaces. In this section we construct lower and upper
radial comparison surfaces that will enable us to obtain estimates that are
uniform in ¢ as ¢ tends to zero.

Consider a radial function w(x) = w(r), r = |x|. A simple computa-
tion gives

w' poow'\ XX,
.. 1
(4.4) w;; +26ij = (7 +2) g, + (w - T) r—2’

We will choose comparison functions w satisfying w' —w' /r>.0. This
implies the eigenvalues of {w, j+25,- j} are w' /r+2 with multiplicity n—1
and w” + 2 with multiplicity 1. Thus

(4.5) det(wij + 26ij) — (,wl/r + 2)n—l(u)// +2).
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Given J > 0 set w(r,d)=(—a+ VR - r2)2 , where

(4.6) c=-a+\R*~-5%, R>a>0.

Then
Wl M oo, w'e2- 2K
r R2 R r2 (R2 _ r2)3/2
(note w” — w'/r > 0) and so
det(w;; +26;;) = (2a)"R2/(R2 _ r2)(n+2)/2.

On the other hand, (1 + 1w /w)"2/% = R™2/(R* - r*)"*)”2  Thus the
graph y = f(x) (with w = x,zl+1
if R, a are related by

(4.7) (K+1DR"=Q2a)", Ke(-1,0).

From (4.6) and (4.7), we see that

c+ /(1 +A)c? + 28 ~2n
(4.8) A+1=4K+1)"">0.

a= ) ,

Lemma 4.1. Let FJO(O) C Q. Then u>w(r,d,) in Féo(O).

Proof. For 0 < & < 6, sufficiently small we have u > w(r,d) in
B;(0). Let 6™ =sup{d € (0, &,) : u> w(r, §) in B,(0)}. By continuity,
u>w(r,d") in Fé. (0). Hence by the maximum principle, ¥ > w in
B+ (0) . But we also have u > A= w(r, 6) on 0B,(0) forall 6 € (0, d,).
Thus 8* = 6, and the strict inequality holds.

Corollary 4.2. Let y € Q with dist(y, dQ) = p. Thenu > ¢ +
a(K)p*, a(K)>0.

Proof. From (4.7), (4.8) with é = p, we have

+/(1+ )2+ 4p°
R—a=(Vifl-1)a= VUt A+47

VIi+Ai+1

=e*/ )} has constant Gauss curvature K,

This implies for suitable a = a(K) >0

2

_ ap
(4.9) R a2c+2c.

Choosing y as the origin of our coordinates, we obtain u(y) > w(0, p) =
(R- a)2 >+ ap2 . qed. .

We turn our attention now to the construction of an upper barrier for
u . Assume that Q satisfies a uniform exterior ball condition, that is, there



392 HAROLD ROSENBERG & JOEL SPRUCK

exists & = 6(Q) such that for each point P € 99, _ﬁnﬁBa(O) = {P} for
suitable choice of origin.
With & now fixed, set

h(x)=h(r)=(c+ A" - 8%, oS<r<d+e.
Then

K (r)=adre + a4 r(F = 8%, W% h=44’F,

B (r) = (44c + 84°1%) + 44°(r* - 57),
and so by (4.5),

det(h,; +20,) = [2+4dc + 44’ (7 - 87"
(2 + 4dc + 84%F%) + 447 (r* — 6%)]
< 21+ 24c + 6€54%)" ™1 . 2(1 + 44°57),
while
2K + 1)(1+ 1w m) "2 > 2K + 1)(1 + 447552,

Thus % is a supersolution of (4.2) if

K+1
2
Choosing € = 64~/ gor 6 = 6(6, K) small enough insures that
(4.10) is satisfied for 4 > A4, large independent of c¢. Note that on

r=90+e¢,

n/2

(4.10) (1+24c+6e64°)" ' < (1+44%5%)

h=(c+Ae(28 +¢€))* > 45°6* 47"V > supu
Q

for 4 > A, large enough, independent of c.
Denote Q,=QnN{d <r <J+¢€(4)} and note that ~>u on 9Q, —

{P}, h(P)=u(P)=¢c".

Lemmad3. h>uon Q, for A>A,.

Proof. For A> 1 wehave h>u on Q,—{P}. Decrease 4 contin-
uously. By construction 4 > u on 8Q, — {P} VA > A, and thus by the
maximum principle, £ >u on Q V4> 4.

Corollary 4.4. Let y € Q with d(y, 9Q) = p < €(4,). Then

u(y) <+ B(K, 8)(co+p°).

Proof. Let P € 8Q be such that |{P —y| = p, and let &, QAo be the

supersolution constructed above. Then
w(y) < h(8 + p) = (c + 4y((8 + p)* = 5%))

<+ B(K, 8)(cp+ ).

2
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We can now prove the important

Proposition 4.5. Let Q satisfy a uniform exterior ball condition with
constant 6. Then |Vu|2/u <C in Q, with C = C(d, K) independent of
c. .

Proof. let y € Q with dist(y, Q) = p > 0. It suffices to assume
p<Le. Setdl =u+|x- y|2 and note that # is convex since {i;;} =
{u;; +26,;} > 0. Hence

IVa(y)| < p~ ( sup @& — &(y)).
3B,(y)

Thus using Corollaries 4.2 and 4.4 (with p replaced by 2p) and Corollary
4.2 we have
[Vu)| < p~ (—ap” + B2ep + 4p")) = (48 — a)p + 2f¢
so that
2 22
[Vu(y)|” < C(p” + ).

By Corollary 4.2 we deduce

o) G+

u(y) c* + a(K) p?

Remark 4.6. For an arbitrary domain Q which need not satisfy the
uniform exterior ball condition, from the above argument we obtain the
interior estimate

<C.

sup (2L IV ¢ ¢ - cisip. 99), K).

u
As a consequence,

(4.11) 2"(K +1) < det(u;; +26,) <C onD,

where C depend only on dist(D, dQ) and K.

4.2, Second derivative estimates on Q. We show in this section that
|D*u| < C on 0Q with C independent of ¢ as ¢ — 0. Let 0 € 8%,
and as usual choose coordinates with x, ‘the interior normal to 9Q at

0 and with x' = Xy, ,x,_;) such that p o =« , at O (recall
near 0 we represent €2 as a graph x, = p(x) with principal curvatures
Kpso K, y). Then (u,g)+26,5)(0) = (2 — u,(0)x,)d,, . Since 0 <

u,(0) < Cc and | | < C, we have
u,+2>21 forc< é

We must show
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Lemma 4.7. |u,,(0)| < C independent of c.
Proof. Set

F(D*u) = (det(u;; +26,))"",
fu, Vu) = 2K + D" (1 + |Vul?/4u)
Differentiating the equation F (Dzu) = f with respect to x_ gives
|Lu,|<Clc

(n+2)/2n

where & = F "fal.aj - fpal.. Here we have used Proposition (4.5) to
estimate |f,u | < C/c. Set T =9,+ p,0,. Then
LTu=Lu, +p,Lu,+u,Lp,+fp,,/n— 2pm.Fi".

Hence,
L Tul < C (% + ZF“) in B,(0),
Tu=0 ondoQnB(0),
|Tu} < C(c+0) onQNaJB,(0),

with C independent of ¢, o.
Set n = - e|x|2/2, 0 < € < 2. By the concavity of F,

F(n) < F(u) + L(n - u),

(4.12)

or
Lu< —€ EFii+f(u, Vu)— (2 —¢€)
=—€> F"+ f(u, Vi)~ f(u, 0)
+2K+ D" —(2-e).
Choosing ¢ =1— (K + 1)1/ " > 0 and using the convexity of f(-, Vu) we
find ,
Lu<-e(1+3 F")+ fu,
or
(4.13) Fu<—e (1+ZF"").
Consider in B_(0) N €2 the barrier
o=Au— c2) + leblz.

Then N .
Zp < —de (1 +S F*)+B (ZZF” +Co/c)
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since f = &(1/c). We choose B = 2CJ/o, A = A/C with 4> C.

D:

Then ¢)'2 |Tu| on 3(Q2N B_(0)) and
Z(e+£Tu)<0 in QN B (0).

Hence the maximum principle gives ¢ > |Tu| in B_(0), and since ¢(0) =
Tu(0) = 0 we have
16, Tu(0)| < 8,0(0),

or
|, (0)] < Au,(0) < C

with C independent of ¢. q.e.d.
Returning to our equation

det(u;; +20,,)(0) =& (1)
and expanding by cofactors we find
A" (u,, +2)=2(1)

uniformly as ¢ — 0. As we saw earlier 4" > 1 for ¢ sufficiently small,
0 <wu,, +2 < C independent of ¢. Thus we have proved

Proposition 4.8. - |u;;| < C on 3Q independent of ¢ as ¢ — 0.

4.3. Global second derivative bounds. Unfortunately, we must redo
the global maximum principle for D*u to make certain that we obtain an
estimate independent of ¢. '

We rewrite (4.2) as

(4.14) F(D*u) = f(u, Vu) in Q1)
with

F(Dzu) = logdet(u;; +24,;),

2
Fiu, V) = 1082'(K + 1)+ (252 ) tog (1 + )

Let

_ #IVul®/(2u)
M= max e (Uge +2),
EesS" T xeQ
where # > 0 will be chosen later.
If M is achieved on 8Q, we are done by Proposition 4.7. Thus we may
assume M is achieved at x, € Q for a direction ¢ = e,, and as before
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(uij(xo)) is diagonal. Thus, ,uqul2 /(2u) + log(u,, + 2) has a maximum
at x,. Set A, =u;;+ 2> 0; then at x, there holds

2
AL Uy Yni _ ;
(4.15) ,u( ) u; + ” + A =0 Vi,
2 2 2
7l V| u; IVul® 2 2
(4.16) o (—Tu_u” - 27’uﬁ + 7 u; +u; + Xk:ukuk“.
2
+”}1&ii _ u121i <0
1

Multiplying (4.16) by 4,/4; and summing give
(4.17)

Z ullii_ﬁ +/M +Zu Pt < Cui Vu
A A4 u ¢ - s

We now differentiate (4.14):

|2

U, ..
(4.18) . Tkﬂ = fu, +fpkukk vk,

u2
Ui 1ij

—fu“1+2fupu uy + L+, %1+f,uill‘
Note that
, us .. .
Hiij i
(4.20 2%y ZZAIMLZM‘
From (4.18) it follows that

uu, .
(4.21) phy Y = pd, (AIVu|2+ZJ’,,kukukk) ’
R k,i I k

while by (4.15) we obtain

uuy,  |Vul
@2 DD, (-2,
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Combining (4.17), (4.19)—~(4.22) and Proposition 4.5 gives the estimate
(4.23)

2 Ui
(%"‘J:,lpl) 1fIVuI +fu +2fupu U, — pA =

Vu
(v’ wl,

< Cll,u!vul

One easily checks, using Proposition 4.5, that f, u = &(1), uJ, =
o(fu), f,=0/u), Suf, =61), fIVu’ =&1), f,, > —clu.

Hence from (4.23) we obtain

(i = C)/wyt) < CAy(ufu+1).

Choosing ,u = C +1 yields a bound for A, and thus also a bound for M
independent of ¢. Therefore we have proved

Proposition 4.9. 3" |u,.(x, ¢)] < C in Q(1) where C is independent
of c.

Hence the proof of Theorem 2 is complete.

5. Proof of Theorem 3

In this section we remove the smoothness hypotheses of Theorem 3 by
an approximation process.

Proof of Theorem 3a. Let Q, be a monotone increasing sequence of
smooth domains converging to (1) in the sense of Hausdorff distance,
where as in the proof of Theorem 2, Q(1) is the vertical translation of Q
to P(1). As in the proof of Theorem 2, there is a smooth solution u* of
(see (4.2))

v (n+2)/2
det(u,; +25,)) = 2"(K + 1) (1+|4’;l ) inQ,,

(5.1)
u=c" onT, =a(Q,).

We now recall from Remark 4.6 and in particular estimate (4.11) that
for any compact subdomain D of (1) there holds

(5.2) 2"(K +1) < det(u}, +6,) < C,
where C depends only on dist(D, 0. Recall also from Lemma 2.1 that

u < B = |x|2 in Q,,
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where h* is harmonic in Q,, R =+ |x|2 on 9Q, . Because of the
monotonicity of the Q, , the h* are monotone increasing. Since also
u* > c* , the u* are uniformly bounded independent of ¢ and k. Thus
in the two-dimensional case n = 2, we may appeal to a result of Heinz
[7] which implies that

(5.3) uu"uCz(D) <cC,

where C depends only on dist(D, 8Q(1)). Using the interior higher
regularity results of Evans and Krylov [9], [3], from (5.3) we obtain the
estimate

k
(5.4) 1 | gavaqy < €

where again C depends only on dist(D, 8Q(1)). Thus a subsequence
of the u* converges to a C™ solution u = u(x, c¢) of (5.1), where the
convergence is locally in C e Of course, u satisfies (5.3). The point in
question is whether u € C°(Q(1)) and u = ¢* on I'. To show this, extend
B* to be ¢ + |x|2 outside Q, ; then B¢ is globally subharmonic and

uniformly bounded independent of k. Thus K" converges to a harmonic
function ~ in Q(1). To show that A =¢ = A+ |x|2 we use a standard
barrier argument. Namely, for each x;, € I' there is a superharmonic
function w with w(xy) =0 and w >0 in Q1) — {x,}. Given € >0,
choose a neighborhood N of x; so that ¢(x) — ¢(x,) < € in N. Now

choose A (independent of k) so large that

k .
sup A <A _inf w.
r-TUN r-TuN§y

Then by the maximum principle,
(5.5) B < ¢(xy) + € +Aw on Q(1),

and thus (5.1) shows that the 4* converge uniformly to 4 in Q(1). It
follows that if we extend the #* to be C? outside Q, , then the u*
converge uniformly to u(x, ¢) in Q(1). Finally, letting ¢ tend to zero, we
can abstract a subsequence of the u(x, ¢) to obtain the required solution
u.

Proof of Theorem 3b. We modify the above argument by replacing
the two-dimensional Heinz interior second derivative estimate with one
valid in all dimensions; then the remainder of the argument is valid in all

dimensions.
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Let 11,'c ,for r =1, 2, be the unique admissible smooth solutions of

(5.6 det(n;; +26,) =2""(K+1) inQ,
7 =c onTl,.
Then as in §2,
< <’ <h -xp,

and n",r =1, 2, are uniformly locally Lipschitz (independent of ¢ and
k) on compact subdomains of Q(1). By assumption, every point of 9Q
is a regular point for Laplace’s equation, and thus a barrier exists at each
point of Q. Therefore as in the proof of Theorem 3a, the H* converge
uniformly to / in Q(1). Hence we may conclude that the #, converge
uniformly to 7" in Q(1). Moreover, the n" are solutions in the viscosity

sense [4] of the limiting problems

det(n;. +25,)=2""(K+1) inQ(1),

57 (1 +28,) =2 (K + 1) in @A)
n=c¢  ond(l),

and thus n2 > nl in Q(1). In particular, given D a fixed compact sub-
domain of (1), we obtain

1. 2 1 1. 2 1
€ = Elgf(”k_"k) — €= Elgf(n -n)>0.
We now modify the calculations of §4.3 to show that
(5.8) |D2uk| <C onD

with C independent of k and ¢. To this end we choose { of the form
{ = (11,2c — k- €),, and note that { > r]i - n,lc, and also that since
{ < (h = (xPP +c%), — (h—(Ix|" + %)), , the support of  is contained
in a fixed compact subdomain of (1) independent of k and c.
Using the concavity of F (Dzu) (recall (4.14)) we have
F(D*n) < F(D"u) + F¥(n — )

ij>

and so at X,
£y 1 n+2 |VuF|?
Let

_ ;t(|Vu|2+4u)/2
M= CES?_lla);GQ é’e (ucc * 2) ’

where u > 0 will be chosen later, and { is as described.
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Clearly M is achieved at x,, € Q for a direction ¢ = ¢, , and as before
(u;;(%,)) is diagonal. Thus,

log ¢ + (1/2)(IVul” + 4u) + log(u,, +2)

has a maximum at x;. Set 1, =u; +2 > 0; then at x, there hold

(5.10) ci/c+uu,.zi+“/+l” -0 vi,

2 2
i G U Yy

5.11 L4 nu A+ uu, .. +—+——+<0.
( ) C CZ +u 1] 'uXk: k“kii /11 /1%

Multiplying (4.16) by A,/A;, and summing give
1 Cii ullu 2
1127 T— +Z - +/M. Zu”

+ud Y Uy }’f” <0.
ki

i

(5.12)

We now differentiate (4.14):

U, ..
(5.13) ‘ /1L = futhe + f e VK,
l
Ui Uyij
(5.14) T A A
2 2
= Sy + 2y ity + Sy F Sy p U F S My
Note that
2
u u
(5.15) /111{1 > ln +Z lif

From (5.13) it follows that
(5.16)  phy Y Skl =y (f|Vu| +Zf ukukk) ,
ki
while by (5.10) we obtain
pr,-uill = —4 (%+,uu +2))
= — A Zf"ifi — UA, Xpriuiu11 ~ 2uA, Zuifp

(5.17)
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and
18 18 1( 2
—L =2l uA; + “’)
LLETLp Zli A
— 1 C§ 1 %11 111
—,I_P_FZ(/I-,l +,uu/1 + 2uu; 2
1 i>1 i M
1 1 1o} ¢
=___1+ _h_ 2 21 2#“1—1)
A c2 bzl()“i P b ¢

Combining (5.9), (5.12), and (5.14)-(5.18), gives the estimate
(u+ fplp_l)lf —2nuk, +fuuf+ qu Uy + [y,

~2ul, Zu + pA £, |Vl 2_ch

(5.19) ¢
€1+2ﬂ/1 Zul iZf <o,
c i>1 c !
Since the support of { is fixed, the quantities f, ., f,, f,, » fp » G Y
1 1 i

are uniformly bounded on the support of { independent of k¥ and c.
Thus multiplying (5.15) by C2 and choosing u sufficiently large, we find
that M is uniformly bounded independent of k and c¢. Since { > ¢/2
on D for k large, the interior estimate (5.8) is valid. This completes the
proof of Theorem 3b.

6. Uniqueness theorems

In this section we shall show that a Jordan curve I" bounds exactly
two K-surfaces, when I' is on a horosphere or on P_ , the asymptotic
boundary of 0 (assuming —1 < K < 0). Each of the K-surfaces is an
embedded disk and is a graph in a horospherical coordinate system.

In general, a Jordan curve T' in H® need not bound any K-surface,
since there are topological obstructions [13]. Also I" can bound immersed
(and embedded) K-surfaces of higher genus. For example, let S be a
sphere in H’ of curvature K (S is compact if K > 0, and is an equidis-
tant, noncompact, sphere if —1 < K <0). Let C,, C, be circles on §
that meet in two points, and let N,, N, be small tubular neighborhoods
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of C;, C, on S. Let P be one of the components of N, NN, . Displace
N, off N, near P, so the new ]VZ U N, is topologically a torus minus
a disk, and let T' be the (smoothed) boundary of N, U ﬁz. Before the
displacement of N, , the corresponding I" (immersed into ) bounds the
immersed K-surface M (a torus minus a disk) in S. If -1 < K <0 any
small perturbation of the boundary values of a K-surface comes from a
perturbation of the surface, so the embedded I' = 9(N, U ﬁz) bounds an
embedded K-surface of genus one. One can also make this work when
K>0. ‘

Let the upper half-space of R} , X3 > 0, model H U P_, with P_
the extended plane x; = 0. For ¢ > 0, let P(c) denote the horosphere
X3 = ¢. We shall say a curve I' in P_ is the asymptotic homological
boundary of a surface M in H? iffor ¢>0 sufficiently small, M N P(c)
contains a connected component I'(c) such that I'(c) converges to I' as
¢ — 0, and I'(c) is homologous to zero on M , i.e., there exists a compact
submanifold M(c) of M and I'(c) =90M{c). We write I' = 9__ (M) for
the asymptotic homological boundary I of M . When we speak of graphs
we mean graphs in this coordinate system: x; = f(x,, x,).

Theorem 6.1. Let I' be a Jordan curve in P_, and K a constant
between —1 and 0. There are exactly two embedded K-surfaces M in
H® with 0, M =T . Each surface is an embedded disk and is a graph over
one of the components of P —T. If M is any immersed K-surface in
H® with O M =T, then M is embedded, and is hence one of the two
graphical disks.

Proof. The existence of one of the two such K-surfaces follows imme-
diately from Theorem 3a. To obtain the second K-surface with boundary
I", we choose a horospherical coordinate system so that the other connected
component of P_ — I is bounded, and again apply Theorem 3a.

It remains to prove the uniqueness of embedded A, with § _M =T
and the embeddedness of an immersed such surface. First we establish
some properties of K-surfaces in H.

Lemma 6.2. Let T be a smooth Jordan curve embedded in the horo-
sphere P(c), ¢ > 0. Let M be a compact K-surface in H? with oM =T.
Then xy>c on M, and M is transverse to P(c).

Proof. Assume to the contrary, that M is not above the horosphere
P(c). Let p be a lowest point of M, so that x,;(p) < c¢. First observe
that the mean curvature vector of M at p (denoted by H(M, p)) cannot
point up: for the vector H(P(x,;(p)), p) points up and the curvature of
P(x,4(p)) is zero, and therefore greater than K. So P(x,(p)) should be
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above M in aneighborhood of p if H(M, p) points up. Hence H(M , p)
must point down. Consider the hyperbolic plane L, tangent to M at p
and below M . M has more curvature than L, so M should be below L
in a neighborhood of p. This contradiction shows M is above x; = c.

Now suppose M is not transverse to P(c) at some point p € I'. Con-
sider vertical planes passing through p (vertical Euclidean planes are hy-
perbolic planes too) and their trace curves @ on M on f on P(c). The
mean curvature vector of M at p is vertically upward, and each curve
« is tangent to the corresponding § at p, so the curvature of each « is
greater than or equal to the curvature of each f, which is one. The curva-
tures of the a-curves at p (as the vertical planes rotate about the vertical
line through p) are between the principal curvatures x, and x, of M at
p, since they are normal sections of M at p. We know K = kK, ~ 1
and x;, >0, x, > 0. Since K <0, at least one of x,, x, is less than one.
Since each normal curvature is of the form «, cos’ 6 + Ky sin? @ for some
#, in any 6 interval of length n, there is a normal curvature less than
one. Hence some « curve has curvature less than one, a contradiction.
‘This proves transversality and Lemma 6.2.

Lemma 6.3. Let I' be a smooth Jordan curve in P(c), ¢ > 0, and let Q
be the bounded domain in P(c) with boundary . Then there is a unique
K-surface M embedded in H?, with M =T, and whose mean curvature
vector points up, and M is a graph over Q.

Proof. The existence of M has been proved in Corollary 1; it remains
to prove uniqueness.

Let C, and C, be circles in P(c) that bound an annulus 4 in P(c),
containing I" in its interior. Let C,, 0 < ¢ <1, be a smooth foliation of
A by Jordan curves such that, for some 7, C, =T '

Let M, and M, be the equidistant spherical caps of curvature X such
that 6 M, = C,, 0M, = C,, and the mean curvature vectors of M,, M,
point up. Choose C;, C; sothat M, is below M and M is below M, .
This is easy to do by Lemma 6.2: once M, is chosen below M, M, canbe
chosen to be the image of a spherical cap containing M, bya hyperbolic
isometry which is a homothety from a pointon P_ .

We now observe that there is a foliation F of the compact region
bounded by 4U MU M, , by K-surfaces N,,0<t<1,with 6N, =C,,
each N, is a graph, and N, = M, N, = M, . We obtain F as follows.
Start at M. By Corollary 1 and the Appendix, for ¢ near 0,7 >0, C,
bounds a K-surface N, (a graph), N, = M,, and N, varies continuously
with ¢ (for compact K-surfaces, K € (-1, 0), small variations of the
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boundary values come from variations of the surface). There are no non-
trivial Jacobi fields on any N,, so they are pairwise disjoint and foliate a
neighborhood of M, . By the compactness Theorem 2.6, the set of ¢ for
which N, exists is closed. Hence the foliation can be extended to 7= 1.
It remains to prove N, = M, . There are several ways to see this. N,
is above P(c), so one can use the Alexandrov reflection technique with
vertical planes to prove N, has all the symmetries of its boundary, the
circle C,. Hence N, is rotational. The details of this approach are in
[11]. Another way to prove N, = M, using a foliation, will be clear later.

Now using the foliation F we will prove M = N_, hence is unique. M,
is disjoint from M and below M . As ¢ increases from 0 to 7,t< 7,
no M, can intersect M , otherwise, consider the smallest such ¢, M, is
on one side of M at an intersection point (necessarily interior to M, and
M), and their mean curvature vectors are both pointing up at this point, so
they would be equal by the maximum principle. This is impossible since
OM,# 0M, for t < 7. Thus M is above N, (maybe equal to it). Now
do the same argument starting with M| and letting ¢ decrease from 1 to
7. As before, we conclude N, is above M. Thus M = N_, and we have
proved Lemma 6.3.

Remarks. 1. Notice that the above argument can be used to give an-
other proof that N, = M, : foliate a region containing M, by equidistant
K-spheres whose boundaries foliate an annulus on P(c) containing C, .
Then the above argument shows N, is a leaf of the foliation, hence equal
to M, .

2. The above proof also implies that a compact embedded K-surface
M in H®> whose boundary is a round circle is part of a sphere. After an
ambient isometry, one can assume C is contained in a horosphere P . If
the mean curvature vector of M points up, then M is part of a sphere as
explained in Lemma 6.3. It if points down, then let P, be a horosphere in

H® with P NP =C. Thus M points up with respect to S , in a suitable
system of horospherical coordinates.

3. We will see later that one need only assume M immersed in order
to conclude that M is spherical, that is, M being an immersed K-surface
with M in a horosphere implies that M is embedded.

Now we can prove the uniqueness part of Theorem 6.1. Assume first
that I' C P_ is a smooth Jordan curve, and Q the bounded component
of {x; = 0} with boundary I". Foliate an annulus 4 in P_ , by Jordan
curves C, sothat C, and C, arecircles,and C, =T forsome 7,0 <7<

1. Let M bea K-surface embedded in H® with 0 M =T, and the mean
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curvature vector of M points up. Let M, and M, be equidistant K-

spheres in H , with O M, = Cy, 0., M, = C,, and whose mean curvature
vectors point up. Choose C;, C, so that M, is below M, and M is
below M,. We foliate the region between M, and M, by K-surfaces
N,,Ny=M,, N, = M, ,each N, agraph;and 9 _N,=C,,for 0<¢t<1.
Assuming such a foliation F exists, it follows, as in the proof of Lemma
6.3, that M = N_, hence is unique. As ¢ goes from 0 to 7,7 < 7, N,
cannot touch M and is below M (a first point of contact of N, and M
cannot be at infinity since this would oblige 0N, NOM # ). Similarly,
decreasing ¢ from 1 to 7, we conclude N, is above M. Hence M = N,
as desired.

Now we construct the foliation F . For ¢ > 0, let C,(c) be the foliation
in P(c) obtained by vertical translation of C,. As in the proof of Lemma
6.3, there is a foliation F(c), by compact K-surfaces N,(c),0 < ¢ <
1, satisfying: N,(c) is a graph, dN,(c) = C,(c), and Ny(c), N,(c) are
equidistant spherical caps that converge to M, and M, respectively, as
¢ — 0. By the compactness results of §4, each N,(c) converges to a K-
surface graph N,, as ¢ — 0 uniformly on compact sets. Clearly the N,
are pairwise disjoint for ¢, # ¢, (otherwise Ntl (c)n Nt2 (c) # O for some
¢ > 0), and they vary smoothly with ¢, hence they form a foliation F as
desired.

Now suppose I C S is a Jordan curve, not necessarily smooth. Let
C,,0<t<1,bea topological foliation of an annulus in P_, with
C,, C, circles and C, =TI for some 7. This foliation can be obtained
using a homeomorphism ¢: P — P_, taking I" to a circle and with ¢
equal to the identity in two small disks, one in each connected component
of P_—TI. Then the preimage by ¢ of a foliation by circles in P_
will give the C,. For ¢ > 0, let C,(c) be a smooth foliation by Jordan
curves, 0 < ¢ < 1, chosen so that C,(c) — C, as ¢ — 0. The foliation
C,(c) bounds a smooth foliation by K-surfaces N,(c), dN,(c) = C/(c),
each N,(c) a graph. This was proved in Lemma 6.3. By the compactness
results of §5, N,(c) converges to a graph N,, as ¢ —» 0, N, = C,. The
foliation N,(c) converge to the foliation by N,. As in the smooth case,
this implies that any K-surface M with 6 _M =1 and mean curvature
vector pointing up, is the leaf N_ of this foliation.

Remark 6.4. We remark that there may exist an embedded K-surface
M with asymptotic boundary a circle I (not homologically) and M not
a graph. It is not hard to see that a rotational surface of this type does not
exist; one obtained by rotating a “drop-like” curve about an axis.
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Our argument fails since one cannot find an equidistant sphere below
such an M , and one above; the mean curvature vectors point in opposite
directions when one uses the foliation. One can still say something about
M : M isinvariant by symmetry in the hyperbolic plane P with §_P =T".
Each component of M in H-P isa graph over a domain in P. We
refer the reader to [11] where this is proved for H-surfaces. The proof
uses Alexandrov reflection in hyperbolic planes “parallel” to P, and works
exactly the same way for K-surfaces; the maximum principle is the basic
tool.

In fact, all the theorems of [11] that are proved using Alexandrov re-
flection apply verbatim for K-surfaces in H®. For example, if M is an
embedded K-surface and d,_M is one point, then M is a horosphere.
If 6_M consists of two disjoint circles, then M is a rotational surface.
Similarly if M equals two points, M is rotational.

Finally, to compleie the proof of Theorem 6.1, we will show that when
0 M =T and M is an immersed K-surface, then M is embedded.

. Choose ¢ > 0 so that M N P(c) contains an embedded curve I'(c) and

I'(c) =8N, NC M, N compact. By Lemma 6.2, we know that N is
above P(c) and is transverse to P(c) along I'(c). Let S be a compact
sphere, suﬁimently close to P(c), so that S is transverse to M, SNM is
a Jordan curve T, close to I'(c), and I bounds a compact submanifold
N of M, N contained in the ball of H® bounded by S. It suﬂices to
prove N is embedded. For notational convenience we will call 1" N by
I", N, for the rest of this proof.

I' separates S into two connected components 4 and B. The idea
is to show that one can smooth, either AUN or BUN, along T, to
obtain a smooth immersed compact surface of positive curvature. Then
by Hadamard’s theorem, the surface is an embedded sphere.

Orient S and N so that their unit normal vectors ng and n,, point
to the convex side of each surface (so ng points into the ball bounded by
S). Let v be a unit vector field along I', that is tangent to M and points
into 4, and let P(x) be the plane generated by ng(x) and v(x). Denote
L(x) =T (M)NP(x). L(x) is one-dimensional since the tangent vector
I'(x) to T at x, is orthogonal to P(x), and in T .(M). M is transverse
to S along I', so L(x) is never orthogonal to ng(x). Hence n,(x)
is never parallel to ng(x)(7, (N) is generated by I'(x) and L(x)). We
know n,(x) is orthogonal to l"'(x) and L(x) hence ny(x) hasa positive
projection onto 4 or B and this is independent of x: {ny(x), v(x)} #0
for xeT.
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Suppose n, projects positively onto 4. We claim that N U 4 can
be smoothed along I' to have positive curvature. First observe that I' is
a curve on (the convex) surface M, so its curvature vector I"'(x) has a
positive scalar product with n,(x) foreach x € I';ie., I' curves towards
the convex side of M . Hence, in a neighborhood of x, NU 4 is in the
half-space defined by I"(x), L(x) and n,.(x). So the plane I'(x), L(x)
is a local support plane for Nu 4, and N U A can be smoothed to be
locally convex.

Appendix: The linearized operator and stability

Let f: M — N be an immersion, M and N Riemannian manifolds,
M compact, and 8M nonempty. Let exp denote the usual exponential
map of the normal bundle of M in N into N, and let n(x), x € M,
denote a unit normal vector field along M in N .

For u € C§+"(M), —1<t<1,wedefine f(t): M — N to be the maps
X > €Xp g, (fu(x)n(x)) . For ¢ near zero, f(¢) is an immersion.

Let K be a (curvature) function and define J = J;: Gy (M) —
C*(M) by

1) = | K.

J; is the linearized operator of K at .f associated to normal variations
given by n. It is also called the Jacobi operator, and elements of its kernel
are called the Jacobi fields. M (i.e., f: M — N) is said to be stable when
the kernel is trivial.

Now suppose N = N™*! (c) is one of the simply connected space forms
R §™ or H™' (¢=0, +1, or —1),and M = M™ is of codimen-
sion one. Let 0 < r < m, and K = S, , be the (r + 1)st symmetric
curvature function of M in N . Then we have an explicit formula for the
Jacobi operator. (cf. [12], [13]):

J(u) =L, (u) +(c(m—r)S, + 8,8, — (r+2)S,,)u,
where [ (u) = div(T,Vu), T, is the rth Newton tensor of the shape oper-
ator 4 of M in N, Ty=1,and T,=81—-AT,_,.

When the linear term has a negative coefficient (i.e., when c(m —r)S, +
S8, —(r+2)S,,, <0 on M), and when L  is an elliptic operator,
the usual maximum principle implies that the kernel of J is trivial. For
example, this is always the case where ¢ = —1 and m = 2, with 0 <
S, <1 (these are convex surfaces in H3). The coefficient of u is 2HK =
S,(=1+8,) < 0; the direction of the normal to M is that for which the
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principal curvatures are positive, so S, > 0. The same reasoning shows
M is stable when r = 1, m arbitrary, 0 < §, < l'and §; > 0. In
particular, if any S, , k > 3, is positive, then so is S; [13]. In general,
however, there may be nontrivial Jacobi fields for S, or S, (r=m—1).

When M is stable (and the linearized equation is elliptic), then small
variations of the boundary values of M come from small variations of
M . We now make this precise.

Assume f: M™ — N™*! and let n be a normal vector field along M
in N. Consider N as isometrically immersed in some Euclidean space
R’ ,and let 7: T — N be the projection of a (small) tubular neighbor-
hood T of N in RI, for y € T, n(y) is the closest point of N to
y. Let y,:0M — N C R’ be the restriction of f to 8M, and for

y € C2+a(8M , N),let h(y): M — R’ denote the harmonic extension of
Y=y, to M.

For y in a neighborhood U of y,, U ¢ C**™(@M, N) and u €
C2**(M) in a neighborhood V' of zero, the map M — R', x — f(x) +
h(y)(x) + u(x)n(x) will be an immersion of M into 7. We define

UxV -5 C(M),  F(y,u)=K@(f +h(@)+un)).

F is C* and
D,F(vy, 0)(u) = J(u).

Suppose Jf is elliptic, and M has constant curvature ¢. Then Jf is a
Fredholm operator of index zero, so D,F(y,, 0) is an isomorphism. By
the implicit function theorem, there is a neighborhood U, C U of y, a
neighborhood ¥V, ¢ V' of 0, and a smooth map u: U, — ¥V, such that
F(y,u(y))=c, for ye U,.

Define H(y) = n(f + h(y) + u(y)n) for y € U,. Then K(H(y)) = ¢
and H(y)) =n(f+0)=f, H(y)/OM =n(f+y—7) =n(y)=7. Thus
the solutions of the equation K = ¢ depend smoothly on the boundary
values.
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